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Abstract

A coherent system with independent non-renewable components with arbitrary lifetime dis-
tributions is considered. A simple observation leads to a hierarchy of upper and lower bounds
that converge to the exact system reliability. The simplest of these bounds is shown to be
tighter than the bounds of Gertsbakh (1985).
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1. Introduction

Consider a coherent system consisting of n independent non-renewable components f 1, 2,.., nj,
with lifetime distributions Fi, i- 1, 2,..,n. Let X- {X(t),t a 0} be the vector performance
process of these components such that X(t) - (X1 (i),X 2 (t),..,X(t)) and X(t) takes the value
0 if component i is up at time t and I otherwise. The state space S of X is then t0, 1}.
Let 0 be the coherent structure function of the system. That is 0:S -- 10, 1}, is non-decreasing
on S and when O(X()) is 0 the system functions at time t and is 1 otherwise. The reliability
R(t) of the system at time t is then given by 1 - EO(X(t))I. It is of interest to obtain R.
In general it is not possible to obtain explicit formula for R and one resort to algorithmic
methods to compute R. Except in some special cases [e.g. Agrawal and Satyanarayana (1984),
Provan and Ball (1984), and Shanthikumar (1982, 1984)], the problem is in general NP-hard
[e.g. Buzacott (1980), and Ball (1984)]. Consequently approximation and bounds have been
developed [e.g. Ball and Provan (1983), Gertsbakh (1985), Shanthikumar (1984), and Shogan
(1976)]. In this paper we derive alternative bounds for R and compare them to that of
Gertsbakh (1985).

Let h(p) a E{I(X(t))}, where pi= E (t)l -Fi(t), and let (G, B) be a partition of S such that
G - 1_j() - 0,x e} S1 and define U - J_: I I a 1,xe S},I- 1,2,..,n, where

Le II I X xi. Suppose min 11 _I [:_xB}-r. Then B -U Vj, where
v- B l4,i - r, r + 1,.., n. With these observations one has,

- (2) .

m~A 1 , (2)

where

A,-l AI U,{- (-, (3)
VV, wl.) CLJW()J

W(x)-k:xk -Ok - 1,2,.., n}, is the set of working components in state x, and

Suppose we have upper and lower bounds BI 2! Al ! C1, t - r, r + 1,.., n. Then we will have
a sequence of upper and lower bounds for h(p) and consequently for R. Specifically

B,
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rn-I a rne-ll U

tA- + -Cj 5h(p) B (4)

b
for m=r,r+l,..n+1, [we use XyiO,b<a for all -jj. Note that the above bounds get tighter
as m increases and give the exact unreallbility when m - n + 1. This allows one to
progressively compute A,,At+I, ... , until a desired accuracy is found.

In Section 2 we develop some upper and lower bounds for At and compare it to that of
Gertsbakh (1985). A simple numerical example is given in Section 3.

2. The Bounds

Without loss of generality assume that the components are numbered so that Pl >--p2 a ... a pn
Since pi- Fi(t) depend on t, this numbering may have to be altered for different values of t,
unless F1Q) a F2 (t) 2 ... F,(t), for all t a 0.

Proposition 2.1: Let I V I I be the number of elements in the set V1. Then

I I V I +I- G -Pn+l - -0 1)

SI I I

Proof: It Is easily seen that for any xe V1 ,

rI.+,-, 0 -Pn+-J) 0 --J)
* (v i) Ui~a IfWQ) CJW(I)

-< t}L " ( 4 4.

The result now directly follows from (3).

B n f
Bounds for System Reliability Function 2 ,
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To use the bounds Cj 1) and B ) one needs to know IV I.Once IIV II, -r,r+ 1,..,
are known one may use the recursion 8 1 - I I I Vt+1 I / I VJ p +u I (1 -Pt+i)} to
compute B), I - r,r+ 1,... [A similar recursion may be und for C ' , r,r+ 1,...] In some
cases obtaining I I Vl I itself m Iy turn out to be omuationaly difficult. In such a case
the observation that I I V1 lI < ( )leads to a modification of B1) as follows:

Proposition 2.2:

A15 (n jLA~lp~jaB)).-(6

We will next obtain a modification of B2). Defime P +- pj/(n+ I-i) and
P*"-,pj/(nl+ 1-Ii±, 1,,...,nl. Foranyy S let

i-!

"."I
iy Pj+ - if y - 1

1i_)"{1 - P. if Yj - o"'i

Then

Proposition 2.3: For any y e U1,

Proof: Let P be the collection of all permutations of 11,2,..,n}. Then

1, HP4{ H (I -,P)
iuf trz) EW(l)

ft- Or, (8)7!(n - 1)! q(' y  8 -

where

Bounds for System Reliability Function 3
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Now consider a subset P- of P, such that the first (n-i) elements in each of the permutations
in P ~ are identical. Then for any r'

ya flq 1 (,2,)-fq(v',y) F. q,(i,y)

n i-I

- ( 0€'., Qc (Y)

N-I

" I j qi,,-)Qn(y)"

since by definition Qn (y) > ih(r,,y) for all V £ pn-1 . Note that liPn-1 [ 1. Therefore

4 N-I

1 fq 5 i,y) .5 HqC,(,Y)Qn(y- ").
ICP i-I WeP i-I

Now defining p- 2 to be a subset of P such that the first n-2 elements of every permutation
in there is identical one sees that

n-2 n-
2T, rl,€-,y) :5 -,,€-,e .-y _Q), -

r,--pn-2 -I

since by definition 2.Qn-Iy) 2t _ 2 qn(,,,y). Note that I IP"-2 1 I -2. Then

We? -I we? p-I i-N-I r.

Continuing this way and observing that I I P [ I - n!, Equation (8) leads to the required result.

.Bl
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Since (7) may give different upperbounds for different y's, it is appropriate that we choose
the minimum of such bounds. In this regard define r to be a permutation of {1, 2,.., nj

such that

1-P- 1 - *-P-
() P (2) Pv(n)

Then using a straightforward pairwise interchange it can be shown that

Proposition 2.4

min Ii)

veP 1(1-P
i- )j-1+1

Equivalently

At < j P*,) [I (I - P-'.O)) = ' (10). =I .N,-~

We will next provide an alternative upper bound for iA, which is tighter than that given
by Gertsbakh (1985). 1-

Proposition 2.5:

Proof: Observe that

A, SP[at least k components are down at time t}. (12)

Since for any we P,

Bounds for System Reliability Function 5



k

Ptcomponents w(1), v(2),..,v(k) are downi - 1Pto,
d-1

one has from (12)

n k

(13),- k! (n - k)! -JP1 (UO .

Using an analysis similar to that used for the proof of Proposition 2.3 one gets

k k

I l1io -s)n! HJ<- (14)
NEP i-I I-I

Combining (13) and (14) one obtains the desired result.

0
When the lifetime of component i is exponentially distributed with rate A8, one has
pi -I - exp(-Xi), i =12,...,. With XI 2! X2 Z- ... > kn,

P+ + l-nl-(1 - exp(-;kit))

i-I

< 1n + 1-i i l "

where A, X A,. Therefore from (11), one gets

r- + n-i}kr+IJ

* ~ ~ ~ ( +(~)H~i

Bounds for System Reliability Function 6



The right hand side of (15) is the bound obtained by Gertsbakh (1985). Clearly (11) is a
tighter bound and is applicable to any component lifetime distributions.

In summary, one can use (4) along with (5), (6), (10), and (11) to obtain alternative bounds
for the system reliability function R. Since the computation of these bounds are relatively
simple, all these bounds may be computed and the best value can be used.

3. A Numerical Example

Consider the network shown below in Figure 1. Suppose we are interested in the reliability
that node s is connected to node t by at least one path of working edges.

2• 5

Figure 1: Directed Reliability Network

Ii 1 2 3 4 5
.1 .1 .08 .08 .08

Table 1: Edge unreliabilities (pi).

The edge failure probabilities pi = 1,2,3,4,5 are given in Table 1. Then the minimum number
of failed edges needed for a cut-set is r=2, and

V2 - {(o,, 1,1, 1), (1,1,1,o, o), (o, 1,1,1,o}}

Bo (0,o,0, 1, 1), (Sst, 1,, 1), (Rai, 1,F1,c),t

Bounds for System Reliability Function 7



(0, 1,1,0,0), (1,0, 1,0,0), (1, 1, 0,0,0),

(0, 1,0, 1,0), (1,0,0,0,1, 1)}

V4 {(0,00,0, 1), (0,0,0, 1,0), (0,0, 1,0,0), (0,1,0,0,0), (1,0,0,0,0)}

V5  1(0,0{0,0o }.

with JIV2 1 1 -3,1 IV3 1 I =8,1 IV41 I -Sand I IVsI I -1. Exact values, upper and lower
bounds of A,,1=2,3,4,5 are calculated using Equations (3), (5), (6), (10), and (11) and
tabulated in Table 2. In this example P:+ is 0.088, 0.09, 0.09333, 0.f, 0. 1 and P7- is 0.088,
0.085, 0.08, 0.08, 0.08 for i = 1, 2, 3, 4 and 5 respectively. Hence r - < 1,2,3,4,5 >, thus
resulting in the same values for the bounds B 2 ) and B) 3 ) [Equations (6) and (10)]. Substituting
the upper and lower bounds for Al in Equation (4) one obtains the bounds for the unreliability
h(p) [shown in Table 3].

BI

'II
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m 2 3 4 5

Eq A _" 0.02348992 0.00483968 0.00027392 0.00000512
Eq(3) A

Eq(5) X c )  0.01786112 0.00355328 0.00023552 0.00000512

t 0.02907712 0.00571648 0.00029952 0.00000512
Eq(5) B

Eq(6) B 2)  0.08493952 0.00707072 0.00029952 0.00000512

, 0.08493952 0.00707072 0.00029952 0.00000512
Eq(10) B

) 0.0792 0.007392 0.0003696 0.000007392
E11-Bn

Table 2: Exact Values, Upper and Lower Bounds for Al.

m Lower bound Upper bounds Using

using Eq(5) Eq(5) Eq(6) Eq(10) Eq(11)

2 0.01786112 0.02907712 0.08493952 0.08493952 0.0792

3 0.02220352 0.02436672 0.02572096 0.02572096 0.02604224
4 0.02345152 0.02351552 0.02351552 0.02351552 0.0235856

5 0.02348992* 0.02348992* .0.02348992* 0.02348992* 0.0234901472

• Exact unreliability.

Table 3: Upper and Lower Bounds for h(p).

Bounds for System Reliability Function 9
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